Selective Autooxidation of Ethanol over Titania-Supported Molybdenum Oxide Catalysts: Structure and Reactivity

نویسندگان

  • Carlos Caro
  • K Thirunavukkarasu
  • M Anilkumar
  • N R Shiju
  • Gadi Rothenberg
چکیده

We study the selective catalytic oxidation of ethanol with air as a sustainable alternative route to acetaldehyde. The reaction is catalysed by molybdenum oxide supported on titania, in a flow reactor under ambient pressure. High selectivity to acetaldehyde (70%-89%, depending on the Mo loading) is obtained at 150 °C. Subsequently, we investigate the structure/performance relationship for various molybdenum oxide species using a combination of techniques including diffuse reflectance UV-visible, infrared, X-ray photoelectron spectroscopies, X-ray diffraction and temperature programmed reduction. As their surface density increases, the monomeric molybdenum oxide species undergo two-dimensional and three-dimensional oligomerisation. This results in polymolybdates and molybdenum oxide crystallites. Importantly, the ethanol oxidation rate depends not only on the overall molybdenum loading and dispersion, but also on the type of molybdenum oxide species prevalent at each surface density and on the domain size. As the molybdenum oxide oligomerisation increases, electron delocalisation becomes easier. This lowers the absorption edge energy and increases the reaction rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanadium Oxide Supported on Al-modified Titania Nanotubes for Oxidative Dehydrogenation of Propane

In this study, characterization of vanadia supported on Al-modified titania nanotubes (TiNTs) synthesized by the alkaline hydrothermal treatment of TiO2 powders has been reported. A promising catalyst for oxidative dehydrogenation (ODH) of propane was prepared via the incipient wetness impregnation method. The morphology and crystalline structure of TiNTs were characterized by transmission elec...

متن کامل

TiO2-ZrO2 Binary Oxides for Effective Hydrodesulfurization Catalysts

Titania-zirconia mixed oxide was developed as support for Mo, CoMo and NiMo catalysts. Synthesis was carried out using evaporation induced self assembly and modified sol-gel templating route. The samples were calcined in a temperature range of 400C to 600C. SEM and porosity analyses were used to ensure that the mesostructure is stable after Mo and promoter incorporation. Wide-angle XRD was used...

متن کامل

Raman and IR studies of surface metal oxide species on oxide supports : Supported metal oxide catalysts

Raman and infrared spectroscopy provide complementary information about the nature of the surface metal oxide species present in supported metal oxide catalysts. This paper reviews the type of fundamental information that is typically obtained in Raman and IR characterization studies of supported metal oxide catalysts. The molecular structures of the surface metal oxide species are reflected in...

متن کامل

Au−Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst

The control over both the dispersion and the particle size distribution of supported precious metal nanoparticles used in heterogeneous catalysts is of paramount importance. Here, we demonstrate the successful formation of highly accessible and well dispersed gold−palladium nanoparticles, stabilized with two-dimensional graphene oxide, that itself is dispersed by intercalated titania particles ...

متن کامل

The Selective Catalytic Reduction of NOx with NH3 over Titania Supported Rhenium Oxide Catalysts

Titania supported vanadium oxide catalysts have been demonstrated to be very efficient catalysts for the selective reduction of NOx with NH3 and have found widespread industrial application for the control of NOx emissions from stationary sources (1). Characterization studies have demonstrated that supported vanadium oxide catalysts consist of a two-dimensional metal oxide overlayer on the oxid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 354  شماره 

صفحات  -

تاریخ انتشار 2012